Интегральные микросхемы – драйверы полумостов, такие как, например, IR2153 или IR2110, предполагают включение в общую схему так называемого бутстрепного (отделенного) конденсатора для независимого питания цепи управления верхним ключом.
Пока нижний ключ открыт и проводит ток, бутстрепный конденсатор оказывается подключен через этот открытый нижний ключ к минусовой шине питания, и в это время он может получать заряд через бутстрепный диод прямо от источника питания драйвера.
Когда нижний ключ закрывается, бутстрепный диод перестает подавать заряд в бутстрепный конденсатор, так как конденсатор в тот же момент оказывается отключен от минусовой шины, и теперь может функционировать как плавающий источник питания для схемы управления затвором верхнего ключа полумоста.
Такое решение вполне оправдано, ведь зачастую требуемая для управления ключом мощность относительно невелика, и расходуемая энергия может просто периодически пополняться от низковольтного источника питания драйвера прямо в процессе работы силового блока. Ярким примером может служить выходной НЧ каскад практически любого маломощного инвертора 12-220.
Что касается емкости бутстрепного конденсатора, то она должна быть ни слишком большой (чтобы успеть целиком перезарядиться за время, пока нижний ключ открыт) и ни слишком малой, чтобы не только не разрядиться об элементы схемы раньше времени, но и иметь возможность постоянно удерживать достаточное количество заряда без заметной просадки напряжения, чтобы этого заряда с лихвой хватило на цикл управления верхним ключом.
Поэтому при расчете минимальной емкости бутстрепного конденсатора во внимание принимают следующие значимые параметры: величину заряда затвора верхнего ключа Qg, ток потребления выходного каскада микросхемы в статическом режиме Is, падение напряжения на бутстрепном диоде Vbd.
Ток потребления выходного каскада микросхемы можно принять с запасом — Is = 1мА, а падение напряжения на диоде принять равным Vbd = 0,7В. Что касается типа конденсатора, то это должен быть конденсатор с минимальным током утечки, иначе ток утечки конденсатора придется тоже брать в расчет. На роль бутстрепного хорошо подойдет танталовый конденсатор, поскольку конденсаторы данного типа имеют наименьший ток утечки из прочих электролитических собратьев.
Пример расчета
Допустим, нам необходимо подобрать бутстрепный конденсатор для питания цепи управления верхним ключом полумоста, собранного на транзисторах IRF830, и работающего на частоте 50 кГц, причем заряд затвора верхнего ключа (напряжение управления с учетом падения напряжения на диоде составит 11,3В) при данном напряжении составит 30 нКл (полный заряд затвора Qg определяем по datasheet).
Пусть пульсация напряжения на бутстрепном конденсаторе не превысит dU=10 мВ. Значит к максимально допустимому изменению напряжения на бутстрепном конденсаторе за один цикл работы полумоста должны привести два основных потребителя: непосредственно микросхема и затвор управляемого ею полевика. После чего конденсатор будет перезаряжен через диод.
Цикл отработки микросхемы длится 1/50000 секунд, значит при потреблении в статическом режиме 1 мА рассеянный микросхемой заряд будет равен
Qмикросхемы=0,001/50000 = 20 нКл.
Qзатвора = 30 нКл.
При отдаче этих зарядов, напряжение на конденсаторе не должно измениться более чем на 0,010 мВ. Тогда:
Cбут*dU=Qмикросхемы+Qзатвора.
Сбуст= (Qмикросхемы+Qзатвора)/dU.
Для нашего примера:
Cбут=60нкл/0,010В = 6000 нф = 6,0 мкф.
Выберем конденсатор емкостью 10 мкф 16 В, танталовый. Некоторые разработчики рекомендуют умножать минимальную емкость конденсатора на 5-15, чтобы наверняка хватило. Что касается бутстрепного диода, то он должен быть быстродействующим и выдержать максимальное напряжение силовой части полумоста в качестве обратного.
Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрическая энергия в быту и на производстве » Практическая электроника