Главная / Электрика / Выбор драйвера для MOSFET (пример расчета по параметрам)

Выбор драйвера для MOSFET (пример расчета по параметрам)

Управление затвором полевого транзистора — важный аспект в разработке любого современного электронного устройства. Например, когда в импульсном преобразователе используется только нижний силовой ключ, и решение принято в пользу использования индивидуального драйвера в виде специализированной микросхемы, необходимо решить задачу подбора подходящего драйвера, чтобы он смог удовлетворить следующим условиям.


          Выбор драйвера для MOSFET (пример расчета по параметрам)

Во-первых, драйвер должен будет обеспечить надежное открывание и закрывание выбранного ключа. Во-вторых, необходимо соблюсти требования относительно адекватной длительности переднего и заднего фронтов при коммутации. В-третьих, драйвер сам не должен перегружаться работая в схеме.

На данном этапе целесообразно начать с анализа данных из документации на полевой транзистор, и уже исходя из них определить, какими должны быть характеристики драйвера. После этого останется выбрать конкретную микросхему драйвера из предлагаемых на рынке.


          Выбор драйвера для MOSFET (пример расчета по параметрам)

Амплитуда управляющего напряжения — 12 вольт

В datasheet на полевой транзистор есть параметр Vgs(th) — это минимальное напряжение между затвором и истоком, при котором транзистор уже начнет потихонечку открываться. Обычно его величина находится в пределах 4 вольт.

Далее, когда напряжение на затворе поднимется примерно до 6 вольт, себя обязательно проявит такое явление как «плато Миллера», заключающееся в том, что в процессе открывания транзистора, из-за индуцированного воздействия падающего напряжения на стоке, емкость затвор-исток временно как бы увеличится, и хотя затвор продолжит получать заряд от драйвера, напряжение на нем относительно истока в течение какого-то времени дальше не повысится.

Однако после преодоления плато Миллера напряжение на затворе продолжит линейно нарастать, и ток стока линейно достигнет своего максимума как раз к тому моменту, когда напряжение на затворе составит примерно 7-8 вольт.


          Выбор драйвера для MOSFET (пример расчета по параметрам)

Поскольку процесс заряда любой емкости протекает по экспоненте, то есть в конце он всегда замедляется, то для более скорого заряда затвора, чтобы не затягивать процесс открывания транзистора, выходное напряжение драйвера Uупр принимают равным 12 вольт. Тогда 7-8 вольт — это будет как раз 63% от амплитуды, до которых напряжение будет расти почти линейно в течение времени равного 3*R*Ciss, где Ciss – текущая емкость затвора, а R – сопротивление на участке затвор-исток.


          Выбор драйвера для MOSFET (пример расчета по параметрам)

Полный заряд затвора Qg

Когда напряжение драйвера выбрано, в расчет принимают полный заряд затвора Qg. Это место компромисса между пиковым током драйвера Iмакс и временем открывания транзистора Tвкл. Сначала узнают полный заряд затвора Qg, который драйвер должен будет передавать затвору в начале каждого рабочего цикла ключа, а в завершении каждого цикла — снимать с затвора.

Полный заряд затвора найдем по графику из datasheet, где в зависимости от напряжения, которое изначально предполагается на стоке, Qg при 12 вольтах Uупр будет разным.

За какое время должен полностью заряжаться затвор — это на самом деле зависит или от того, какой длительности необходимо получить фронт открытия силового транзистора, или от того, какой имеется в распоряжении драйвер. Выбираемый драйвер должен будет иметь подходящие параметры Rise Time и Fall Time.

Но поскольку мы решили, что будем выбирать драйвер исходя в первую очередь из потребностей разрабатываемой схемы, то начинать расчет будем именно со времени, за которое транзистор должен будет полностью открыться (или закрыться). Разделим заряд затвора Qg на величину требуемого времени открытия (или закрытия) ключа Tвкл(выкл) – получим средний ток, выходящий из драйвера, проходящий через затвор:

Iср=Qg/Tвкл.

Пиковый ток драйвера Iмакс

Так как в целом процесс заряда затвора протекает практически равномерно, то можно считать, что выходной ток драйвера снизится почти до нуля к моменту полного заряда затвора (до напряжения Uупр). Следовательно примем пиковый ток драйвера Iмакс равным удвоенному значению среднего тока: Iмакс=Iср*2, тогда драйвер точно не перегорит от перегрузки по выходному току. В итоге выбираем драйвер исходя из Iмакс и Uупр.


          Выбор драйвера для MOSFET (пример расчета по параметрам)

Если же драйвер уже имеется в нашем распоряжении, а Iмакс получился больше, чем пиковый ток драйвера. Просто разделим амплитуду управляющего напряжения Uупр на значение максимального тока Iмакс.драйвера.

По закону Ома получим значение минимального сопротивления, которое необходимо иметь в цепи затвора, чтобы ограничить ток заряда затвора величиной заявленного в datasheet пикового тока для имеющегося драйвера:

Rgate=Uупр/Iмакс.драйвера

В datasheet бывает указано значение Rg – сопротивление участка затвор-исток. Его важно учесть, и если этой величины окажется достаточно, то тогда и внешнего резистора не нужно. Если же нужно еще более ограничить ток — придется добавить еще и внешний резистор. Когда добавлен внешний резистор, это скажется на времени открывания ключа.

Увеличенный параметр R*Ciss не должен привести к превышению желательной длительности переднего фронта, поэтому данный параметр необходимо вычислить.


          Выбор драйвера для MOSFET (пример расчета по параметрам)

Что касается процесса запирания ключа, то здесь расчеты ведутся аналогично. Если же необходимо чтобы длительности переднего и заднего фронтов управляющих импульсов отличались между собой, то можно поставить раздельные RD-цепочки на заряд и на разряд затвора, чтобы получить различные постоянные времени для начала и для завершения каждого рабочего цикла. Опять же важно помнить что выбираемый драйвер должен будет иметь подходящие параметры минимальных Rise Time и Fall Time, которые обязаны оказаться меньше требуемых.

Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрическая энергия в быту и на производстве » Практическая электроника

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

1 × 3 =